论文专利



2017

1. “Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability”, K Cheng; W Zhou; J Kang; S He; S Shi; Q Zhang; Y Pan; W Wen; Y Wang, Chem. 2017, 334-347  DOI:10.1016/j.chempr.2017.05.007.
2. “CO Dissociation Mechanism on Pd-Doped Fe(100): Comparison with Cu/Fe(100)”, W Wang; Y Wang; G-C Wang, J. Phys. Chem. C 2017, 121, 6820-6834.
3. “Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth vanadate with controllable facets and cocatalysts”, S Xie; Z Shen; H Zhang; J Cheng; Q Zhang*; Y Wang*, Catal. Sci. Technol. 2017, 7, 923-933.
4.“Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics”, X. Shen, J. Kang, W.Niu, M. Wang, Q. Zhang*, Y. Wang*, Catal. Sci. Technol. 2017, 7, 3598-3612.
5. “Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. K. Cheng, J. Kang, Q Zhang; Y. Wang*, Sci. China Chem. 2017, 60, 1382-1385.
6. “Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas”, B Gu; S He; W Zhou; J Kang; K Cheng; Q Zhang; Y Wang, J. Energy. Chem. 2017, 26, 608-615.
7. “Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction”, T Liu; K Wang; Q Yuan; Z Shen; Y Wang; Q Zhang; X Wang, Nanoscale 2017, 9, 2963-2968
8. “CO Dissociation Mechanism on Pd-Doped Fe(100): Comparison with Cu/Fe(100), W. Wang, Y. Wang*, G. C. Wang*, J. Phys. Chem. C 2017, 121, 6820-6834.
9. “Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection”, W Zhao; B Ni; Q Yuan; Y Wang; Q Zhang; X Wang, Langmuir 2017.DOI:10.1021/acs.langmuir.7b01274

2016

1. “Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling”, K Cheng; B Gu; X Liu; J Kang; Q Zhang*; Y Wang*, Angew. Chem. Int. Ed. 2016, 55, 4725-4728. (VIP Paper, Highlighted by Angew. Chem. Int. Ed.)
2. “Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis”, B An; K Cheng; C Wang*; Y Wang*; W Lin*, ACS Catal.2016, 6, 3610-3618.
3. “The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer–Tropsch synthesis”, K Cheng; V Subramanian; A Carvalho; V V Ordomsky*; Y Wang; A Y Khodakov, J. Catal. 2016, 337, 260-271.
4. “Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines”, W Deng; J Chen; J Kang; Q Zhang*; Y Wang*, Chem. Commun. 2016, 52, 6805-6808.
5. “Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures”, S Xie; Q Zhang*; G Liu; Y Wang*, Chem. Commun. 2016, 52, 35-59.
6. “Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer-Tropsch Catalysts for Selective Synthesis of Diesel Fuel”, J Kang; X Wang; X Peng; Y Yang; K Cheng; Q Zhang*; Y Wang*, Ind. Eng. Chem. Res. 2016, 55, 13008-13019.
7. “Direct conversion of formaldehyde to ethylene glycol via photocatalytic carbon-carbon coupling over bismuth vanadate”, Z Shen; S Xie; W Fan; Q Zhang; Z Xie; W Yang; Y Wang; J Lin; X Wu; H Wan; Y Wang*, Catal. Sci. Technol. 2016, 6, 6485-6489.
8. “Mesoporous H-ZSM-5 as an efficient catalyst for conversions of cellulose and cellobiose into methyl glucosides in methanol”, L Xue; K Cheng; H Zhang; W Deng; Q Zhang*; Y Wang*, Catal. Today 2016, 274, 60-66.
9. “A new horizontal in C1 chemistry: Highly selective conversion of syngas to light olefins by a novel OX-ZEO process”, Y Wang*, J. Energ. Chem. 2016, 25, 169-170.
10. “Production of organic acids from biomass resources”, W Deng; Y Wang*; N Yan*, Current Opinion in Green and Sustainable Chemistry 2016, 2, 54-58.

2015

1. Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles.X Peng; K Cheng; J Kang; B Gu; X Yu; Q Zhang*; Y Wang*, Angew. Chem. Int. Ed. 2015, 54, 4553-4556.
2. Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles.K Cheng; L Zhang; J Kang; X Peng; Q Zhang*; Y Wang*, Chem.Eur. J. 2015, 21, 1928-1937.
3. Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline-TiO2 nanocomposites.G Liu; S Xie; Q Zhang*; Z Tian; Y Wang*, Chem. Commun. 2015, 51, 13654-13657.
4. SrNb2O6 nanoplates as efficient photocatalysts for the preferential reduction of CO2 in the presence of H2O.S Xie; Y Wang*; Q Zhang*; W Deng; Y Wang*, Chem. Commun. 2015, 51, 3430-3433.
5. Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts”, K Cheng; M Virginie; V V Ordomsky; C Cordier; P A Chernavskii; M I Ivantsov; S Paul; Y Wang; A Y Khodakov, J. Catal. 2015, 328, 139-150
6. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis”, K Cheng; V V Ordomsky; B Legras; M Virginie; S Paul; Y Wang; A Y Khodakov, Appl. Catal. A-Gen. 2015, 502, 204-214.5.
7. Functionalized Carbon Nanotubes for Biomass Conversion: The Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst.C Zhou; W Deng; X Wan; Q Zhang*; Y Yang; Y Wang*, Chemcatchem 2015, 7, 2853-2863.
8. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles.W Deng; H Zhang; X Wu; R Li; Q Zhang*; Y Wang*, Green Chem. 2015, 17, 5009-5018.
9. Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C-C bond cleavage.W Deng; Q Zhang*; Y Wang*, J. Energy. Chem. 2015, 24, 595-607.
10.Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals.W Deng; H Zhang; L Xue; Q Zhang*; Y Wang*, Chin. J. Catal. 2015, 36, 1440-1460
11.Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid.W Deng; Q Zhang*; Y Wang*, Sci. China Chem. 2015, 58, 29-46.

2014

1.  Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry Z Guo; B Liu; Q Zhang; W Deng; Y Wang; Y Yang, Chem. Soc. Rev. 2014, 43, 3480-3524.
2.  Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen B Hu; W Deng; R Li; Q Zhang; Y Wang; F Delplanque-Janssens; D Paul; F Desmedt; P Miquel, J. Catal. 2014, 319, 15-26.
3.  Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au-Pd Alloy Nanoparticles X Wan; C Zhou; J Chen; W Deng; Q Zhang; Y Yang; Y Wang, ACS Catal. 2014, 4, 2175-2185.
4.  MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water S Xie; Y Wang; Q Zhang; W Deng; Y Wang, ACS Catal. 2014, 4, 3644-3653.
5.  Fischer-Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity Q Zhang; K Cheng; J Kang; W Deng; Y Wang, Chemsuschem 2014, 7, 1251-1264.
6.  Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations Z Tang; W Deng; Y Wang; E Zhu; X Wan; Q Zhang; Y Wang, Chemsuschem 2014, 7, 1557-1567.
7.  Cs-substituted tungstophosphate-supported ruthenium nanoparticles as efficient and robust bifunctional catalysts for the conversion of inulin and cellulose into hexitols in water in the presence of H-2 W Deng; E Zhu; M Liu; Q Zhang; Y Wang, Rsc Advances 2014, 4, 43131-43141.
8.  Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters X Wan; W Deng; Q Zhang; Y Wang, Catal. Today 2014, 233, 147-154.
9.  Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids W Deng; Q Zhang; Y Wang, Catal. Today 2014, 234, 31-41.
10. Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts F Yu; X Wu; Q Zhang; Y Wang, Chin. J. Catal. 2014, 35, 1260-1266.
11. A Comparative Study of Size Effects in the Au-Catalyzed Oxidative and Non-Oxidative Dehydrogenation of Benzyl Alcohol J Chen; W Fang; Q Zhang; W Deng; Y Wang,  Chem-Asian J 2014, 9, 2187-2196.

2013

1. “Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water”, Y Wang; W Deng; B Wang; Q Zhang; X Wan; Z Tang; Y Wang; C Zhu; Z Cao; G Wang; H Wan, Nat. Commun. 2013, 4.
2. “Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure”, Q Zhai; S Xie; W Fan; Q Zhang; Y Wang; W Deng; Y Wang, Angew. Chem. Int. Ed. 2013, 52, 5776-5779
3. “Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO”, S Xie; Y Wang; Q Zhang; W Fan; W Deng; Y Wang, Chem. Commun. 2013, 49, 2451-2453.
4. “Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification”, J He; Q Zhai; Q Zhang; W Deng; Y Wang, J. Catal. 2013, 299, 53-66.
5. “Niobic Acid Nanosheets Synthesized by a Simple Hydrothermal Method as Efficient Bronsted Acid Catalysts”, W Fan; Q Zhang; W Deng; Y Wang, Chem. Mater. 2013, 25, 3277-3287.
6. “Semiconductor-based nanocomposites for photocatalytic H-2 production and CO2 conversion”, W Fan; Q Zhang; Y Wang, Phys. Chem. Chem. Phys. 2013, 15, 2632-2649.
7. “Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts”, J Wang; Z You; Q Zhang; W Deng; Y Wang, Catal. Today 2013, 215, 186-193.
8. “Catalytic conversion of methyl chloride to lower olefins over modified H-ZSM-34”, T Xu; H Song; W Deng; Q Zhang; Y Wang, Chin. J. Catal. 2013, 34, 2047-2056.
9. “Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst”, Z You; W Deng; Q Zhang; Y Wang, Chin. J. Catal. 2013, 34, 956-963.
10. “Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis”, Q Zhang; W Deng; Y Wang, J. Energy. Chem. 2013, 22, 27-38.
11. “Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis”, J Kang; W Deng; Q Zhang; Y Wang, J. Energy. Chem. 2013, 22, 321-328.

2012

1. Transformation of Methane to Propylene: A Two-Step Reaction Route Catalyzed by Modified CeO2 Nanocrystals and Zeolites, J He; T Xu; Z Wang; Q Zhang*; W Deng; Y Wang*, Angew. Chem. Int. Ed. 2012, 51, 2438-2442.
2. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides, T Xu; Q Zhang*; H Song; Y Wang*, J. Catal. 2012, 295, 232-241
3. Mesoporous Beta Zeolite-Supported Ruthenium Nanoparticles for Selective Conversion of Synthesis Gas to C-5-C-11 Isoparaffins, K Cheng; J Kang; S Huang; Z You; Q Zhang*; J Ding; W Hua; Y Lou; W Deng; Y Wang*, ACS Catal. 2012, 2, 441-449.
4. Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate-Supported Gold Nanoparticles, D An; A Ye; W Deng; Q Zhang*; Y Wang*, Chem.Eur. J. 2012, 18, 2938-2947.
5. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals, W Deng; Q Zhang*; Y Wang*, Dalton. Trans. 2012, 41, 9817-9831.
6. Significant Synergistic Effect between Supported Ruthenium and Copper Oxides for Propylene Epoxidation by Oxygen, W Long; Q Zhai; J He; Q Zhang*; W Deng; Y Wang*, ChemPlusChem 2012, 77, 27-30.
7. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation, A Ye; W Fan; Q Zhang*; W Deng; Y Wang*, Catal. Sci. Technol. 2012, 2, 969-978.
8. Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water, W Deng; Q Zhang*; Y Wang*, Catal. Surv. Asia 2012, 16, 91-105.

2011

1. Mesoporous Zeolite-Supported Ruthenium Nanoparticles as Highly Selective Fischer-Tropsch Catalysts for the Production of C-5-C-11 Isoparaffins, J Kang; K Cheng; L Zhang; Q Zhang*; J Ding; W Hua; Y Lou; Q Zhai; Y Wang*, Angew. Chem. Int. Ed. 2011, 50, 5200-5203.
2. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions, M Liu; W Deng; Q Zhang*; Y Wang*, Chem. Commun. 2011, 47, 9717-9719.
3. Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons, Q Zhang*; W Deng; Y Wang*, Chem. Commun. 2011, 47, 9275-9292.
4. Hydrotalcite-Supported Gold Catalyst for the Oxidant-Free Dehydrogenation of Benzyl Alcohol: Studies on Support and Gold Size Effects, W Fang; J Chen; Q Zhang*; W Deng; Y Wang*, Chem.Eur. J. 2011, 17, 1247-1256.
5. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution, W Fan; Q Lai; Q Zhang*; Y Wang*, J. Phys. Chem. C 2011, 115, 10694-10701.
6. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H-2 stream, Q Zhang*; X Liu; W Fan; Y Wang*, Appl. Catal. B Environ. 2011, 102, 207-214.
7. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids, W Deng; M Liu; Q Zhang*; Y Wang*, Catal. Today 2011, 164, 461-466.
8. Rh-catalyzed syngas conversion to ethanol: Studies on the promoting effect of FeOx, J Wang; Q Zhang*; Y Wang*, Catal. Today 2011, 171, 257-265.

2010

1. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures, W Deng; M Liu; Q Zhang*; X Tan; Y Wang*, Chem. Commun. 2010, 46, 2668-2670.
2. Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, W Fang; Q Zhang*; J Chen; W Deng; Y Wang*, Chem. Commun. 2010, 46, 1547-1549.
3. Copper-catalyzed propylene epoxidation by oxygen Significant promoting effect of vanadium on unsupported copper catalyst, L Yang; J He; Q Zhang*; Y Wang*, J. Catal. 2010, 276, 76-84.
4. Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane, J Zhang; M Sun; C Cao; Q Zhang*; Y Wang*; H Wan, Appl. Catal. A 2010, 380, 87-94.
5. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity, Q Zhang*; J Kang; Y Wang*, ChemCatChem 2010, 2, 1030-1058.
6. Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates, Y Wang*; D An; Q Zhang*, Sci. China-Chem. 2010, 53, 337-350.

地址:中国厦门市翔安区厦门大学翔安校区能源1号楼     邮编:361102     联系电话:0592-2184591     邮箱:nel@xmu.edu.cn    

©2017 醇醚酯化工清洁生产国家工程实验室 版权所有